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ABSTRACT

We study the scattering of an incident wave loy a flexible panel. The panel vibratiou

is governed by the nonlinear plate equations while the loading on the panel, which is the

pressure difference across the panel, (depends on the reflected and transmitted waves. Two

models are used to calculate this structural-acoustic interaction problem. One solves the

three dimensional nonlinear Euler equations for the flow-fiel( cuupled with the plate eqlua-

tions (the fully coupled model). The second uses the linear wave equation for the acoustic

field and expresses the load as a double integral involving the panel oscillation (the decoupleth,

model). The panel oscillation governed by a system of integro-(lifferential equations is solved

numerically and the acoustic field is then defined by an explicit formula. Numerical results

are obtained using the two models for linear and nonlinear panel vibrations. Th1e pre, ictiIs

ogivel i)by the.ýe two models are in good agreement but the comp)utational tininc needed for lehe

"fully coupled model" is 60 times longer than that for 'the ,le,' oupled mtodel".
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1. Introduction

We consider the scattering of an incident acoustic wave by a planar interface, the (x.

z) l)lane. The interface is a rigid surface except on the flexible thin panel, D, with paliel

thickness h much smaller than the size L of the p)anel, or the size of D,

h/L <1. (1.1)

This is a basic structural-acoustic interaction problem simulating the transmission of an

external acoustic source, say the engine noise, through the airframe into its interior. It

is an interaction problem because the incident wave excites panel oscillation which in

turn induces transmitted and diffracted waves. Meanwhile, these waves contribute to the

loading on the panel. Although in an engineering problem, the typical amplitude of the

transverse displacement, 71*, has to be much smaller than the size of the panel, i. e.,

,;*/L < 1 , (1.2)

the problem can be nonlinear in three different aspects:

(1) The l)anel oscillation can be nonlinear when the transverse displacement of the panel

is not much smaller than the p)anel thickness h, that is

7/ * h . (1.3)

Nonlinear plate equations are needed usually when the incident wave is in resonance

with the panel oscillation.

(2) In the near-field, of length scale L, the flow-field is linear and obeys the .•inn)le wave

equation but in the far-field, of length scale much larger than L, the flow-field may i

become nonlinear when the second order terms are needed to account for the gradual ,

steepening of conmpression waves.

(3) In case the flow-field is nonuniform and/or the initial pressure variation is no longer

much smaller than the ambient pressure then we have n,:Iuear flew in tli niwai-fitihl. ais

yIrC QU.111i_' W..J: 0 .3



We have to solve the Euler equations with appropriate initial data to simulate an

incident wave and far-field conditions.

Regardless of whether the flow-field is linear or nonlinear, the plate should have sufficient

rigidity so that the transverse displacement of the plate remains small and hence the

governing equations for the plate derived under assumption (1.1) remain valid.

For the, problem of sound transmission through a moving airframne, the external acous-

tic field is governed by the convective wave equation while that in the interior by the simple

wave equation. Also the pressure and density in the exterior can be much lower than those

in the interior. In the simple model simulating the experimental data with no-flow on both

sides of the panel, both acoustic fields are governed by the simple wave equation with the

same ambient pressure and density. The validity of the linear theory for the flow-field is

confirmed by the investigations of Frendi et al. [1,2] and Maestrello et al. [3]. They showed

that even when the panel vibration is nonlinear, the acoustic field can remain linear.

The pressure difference across the panel induces the planel oscillation which in turn

excites the transmitted wave and an additional reflected wave. Thus the solution of the

panel oscillation is coupled with the solutions of the scattered and transmitted waves which

satisfy the far-field radiation conditions for outgoing plane waves (see for example [4]). In

general numerical solution of the scattering of an incident wave by ail elastic scatterer.

an interface, or a panel, requires the introduction of a finite computational domain for

both acoustic fields. Higher order radiation conditions were derived [5-61 so that they can

be imposed on the boundary of the finite computational domain to give more accurate

approximation to the solution in the unbounded dolmain. Since the size of the comiputa-

tional dlomain has to be much larger than the size of the panel or a scattcrer, numerical

solution of this three-dimensional unsteady problem is very tedious especially when the

comlptationl has to !,o continued for a long time relative to the period of oscillation of th,

panel. Furthermore, the accuracy of the solution depej'dens not oly oin that of the umleri-

cal solution of the differential equations but also oii the approximate loundary conditions.

Refinements of the grid size and time sto'i 1i;;.e to •o with all ,,11,,'•,ene ,,f t1,, ,'• cotJ0,•i,-

tional domloain. It is desirable to find exact boundary conditions so that tHie compltational



domain does not have to be much larger than the scatterer and is independent of the choice

of grid size. The exact conditions were presented in [7] for a scatterer or inhoniogeneous

mediunm of bounded support. With the scatterer inside the comiputational domain, the

integral representation of the solution of the simple wave equation is applicable to the

region outside and on the boundary of the computational domain.

Here the scatterer is a p)anel eml)edded in a rigid 1)lane. The integral representation

can be applied on the panel and the integrand involves only the normal velocity of the

pailel [8, 9]. Thus we have a system of integro-differential equations for the panel oscillation

decoupled from the acoustic field. This system is referred to as the decoupled model.

For the case that the acoustic wave length is much smaller than L, the integral repre-

sentation can be approximated by the local derivatives of the panel oscillation and hence

the integro-differential equations are reduced to partial differential equations [8, 9]. This

approximation is not applicable here because in the experimental data, the acoustic wave

length is comnparable to L. We need numerical solution of the integro-differential equations

for the panel oscillation and then we can use the integral representation to evaluate the

acoustic field and the nonlinear waves in the far field by Whithani's theory or matched
asymptotics.

Note that the solution of the decoupled panel oscillation is an unsteady two dimlen-

sional problem in the finite domain E) anid is several orders of magnitude simpler than the

solution of the fully coupled problemn. To show the efficiency of the decoupled model and

the accuracy of the solution even when the painel oscillation is nonlinear, we compare the

solution of this decoupled system with the solution of the fully coupled problem for whi,'h

we solve the three-dimensional nonlinear Euler equations for the flow-field coupled with

the nonlinear equations for the panel oscillations.

In the next section we l)resent the mathematical fornmulations of these two models and

discuss their aplpL. ations in general. Section 3 describes the various numerical techniques
u i ' i '," ,V,,. l-he restto andol (isCn,,!if ar1 a d•gie q iL, , t ,u 4, amlq I

the conclusions are in section 5.
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2. Formulation of the Two Models

The physical prolleimi being studied experimentally is that of the nonlinear oscillations

of a typical aircraft panel excited by harmonic plane waves at normal incidence. The panel

is clanl)ed onto a large rigid plate. Let the typical panel be represented by a rectangular

domain V) in the (x,z) plane, with length L, width W and one vertex located at (.r0 , zo),

i. e.,

D {(x,-z) I xo < x < x0 + L , zo < Z < zo + w}. (2.1)

The coniplimnent of " in the (x,z) plane represents the rigid plate. The incident side is

the half space y > 0 and the transmitted side is the half space y < 0. Both sides have

the same anibient pressure p) and temnlperature T,, and hence the same speed of sound C

and density p,. We denote the pressure and velocity potential of the flow-field b)y p and

q and use the superscripts + and - to denote the quantities on the sides y > 0 and y < 0.

On the side y > 0, the superscripts i and r are used to denote the quantities associated

with the incident and reflected waves, respectively. These two waves are mirror inages

with respect to the (x, z) plane. When the incident waves are plan(e waves advancing inI

the direction opposite to the y axis and hitting the (x, z) plane at t = 0, we have

0{i)(t,.r,y, z) = f(Ct + y) and ý(r)(tx,y, z) = f(Ct - y), (2.2)

with f(•) = 0 for ý < 0. Therefore 0(') = 0 when 0 > y < Ct.

Transverse oscillation, 71, of the rectangular flexible p)anel, D, is excited by the pressure

difference across the panel for t > 0 and the oscillation in turn induces scattered waves 0"

in the incident side and transmitted waves 0. Both waves have the homogeneous initial

data at t = 0,

O(S) = =0o, Y>o,
0(2.3)

t =0 Y < 0.

Under linear theory, we have

x(, y, z) = ) .r, -y, z)

(2.4)
(x, -y, z) = -y"(t, ,ybz) for y > 0
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The wave fronts of O(W) and 0(t) are the envelopes of the sonic spheres with radius Ct and

centered on the panel in y > 0 and y < 0, respectivbly. The pressure in the incident and

transmitted sides are

p + - Poo = p+i -p(r) + p(.9) , y > 0
(2.5)

P- -Poo- , Y y<0

and the pressure difference across the panel is

Ap=p- -p+ =2p(t) -[(i)+p(r)], y=0, (x,z) ED1. (2.6)

In this section we formulate two mathematical models to compare with and conipli-

ment the experimental studies. We. present the system of equations governing the nonlinear

flow-field and panel oscillation (the fully coupled model) in Section 2.1 and formulate the

system of integro-differential equations for nonlinear panel oscillation including the effect

of a linear acoustic field (the decoupled model) in Section 2.2.

2.1 The Fully Coupled Model

In this model the structural-acoustic interaction is analyzed by solving the three-

dimensional nonlinear Euler equations together with the nonlinear plate equations. The

configuration of the computational domain is shown in Fig. 1. In cartesian coordinates, x,

y and z, the compressible, nonlinear Euler equations can be written in conservation form

as

Q( = F, + Gv + H•, (2.7)

where Q is the vector (p, pu, pv, pw, e), p is the density, pu, pv and pw are the x, y and

z momenta respectively, and e is the total energy per unit volume given by

1 2 w2
e = p(u +v + ) + pcT, (2.8)

2

with c,, being the specific heat at constant volume. In eq. (2.7), the functions F, G and

5r



Hare:
F'/ pliv

Sputly
U( +1)

G Pv2 + 1/ (2.9)

,(c + p)

l pil"G i [f 2 ±) (I (29

H P171 P
p,1 2 + p
W(c dI- p))

In addition to eq. (2.7), the e(quatioln of state (of a11 ideal gas is used:

1' =,RT. (2.10)

wherc 1) is the pressurv, R the gas conistant. an(l T the temperatuIrl. Since we assmle that

the i1,,'ident, wave hits the panel at t = 0, the flow om the transmitted side, y < 0, is at

rest, fir t <' 0. The initial data at t = 0 for !/ < 0 ar..

it = W,0 , 1 :-f and p = P . (2.11)

()n the rig•di plate we have zero normal velo'ity.

0,(.r,(),_')= 0 for (.",z) ý ' . (2.12)

The motiom of the flexile lpaiiell, D, is lescril)d by a systecm of tlhrv, nonli 'a" partial

difr'eIentia] qulations given 1y [1.0];

DV4 i1 + f/)hlt/g + -fi =' 1I

Eli1 .v.2 [01,. + IIJ,.(il,', + "'1/--

-t- 1--t-1 2

(11 + 71. +

-t ( . i...)0'1.(, , -1 + ,,,0 + ,i/..,z (2.13)



di~ it?1 u. + (l2?VL, = - ?Ix(';Ix x± d, il.)-, ('27/zxzz

Iv°. + dl zv?. + d2 Uw. = -?lz(ilzz + di ?1r) - d2 ?lizIz.

whlere

V4 / = 71i + 2 ?,xxzz + ?/zzz- (2.14)

(1 - ( 1 +2 Eh 3
1- (2= D= 12(1-u')' (2.15)

uI and ,,,O are the in-plane displacements, and 7/ is the transverse displacement. The

p)hysic'al constants for the panel appearing in (2.13) are; the stiffness (D), the density (pp,),

the thickness (h), the physical damping (-), the modulus of elasticity (E) and the Poisson

ratio, (it). The system of equations (2.13) is solved subject to the homogeneous initial

at t=O0 10 =w =7 = t =0 (2.16)

;1I the clamped boundary conditions on C given by

.r .ro I .ro + L, U° = 7° = 7/ , =0,
0 0(2.17)

In vq. (2.13), the load Ap defined by (2.6) contains the coupling with the acoustic field pf

aItId the forcing term (p(t) + p( r)) which represents the load on the panel if the panel were

rigid. We assume the forcing term to be a harmonic wave of the foirm

p i) + )(r) = e in(wt) H(t) on y - 0+ (2.18)

where I a-nd wu are the amplitude and frequency of the wave arnd H denotes the Heaviside

unit step function. The load on the panel P given by (2.6) becomes

Ap = [2p1 - f .sii(wt)] H(t) . (2.19)

Another c'ondition coupling the flow-fields and the pInel oscillation is the kinematic con-

ditioT,1s,

,/1(t, xr, z) = x,+(,.x, 0,'z), (r, z) 'E P. (2.20)
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They are imp~osed oil y = 0± b)ecause of the small panlel displacement , (1, 1). The numerical

schiemle for the solution of thle nlonlinlear plate equation (2.13) andl tht, Euler equations, (2.7)

for thme tranlsmnittedl waves with homogeneous Initial (lata wvill be describedl ill Ser. 3.

2.2 The Decoupled Model

Now we analyse the nonlinear panel oscillation e-xcited( by a xv',ik imirident isii~

wave. 1)(1, iiim(ler the assumnpt ion that tilie pres'sure fluc(tlnat l(io remlains" nui1cli simaller thanl

lie aliim 1 )int pressure pJ . 1. e.'

(, - I), V),v~ < 1.(2.21)

Consequently, the smnall (listlirbance theory is applicable to the flow fieldls III time inci(lenlt

and1( tranlsmlittedl si(les aim(l the lpane(l/acoiistic linteraction prob~leim Is dlescribedl by (2.1)

(2.6). The velocity poten-,ial I (P 1 (t - . y, z ) Is governedl by thle siniphc w~ave equationl.

(CD2  dh -D0Y' - 0" ) (D 0. for ±y> . (2.22)

and~ thle acoustic p)ressure anld Velocity V± are, related to the p)otenltial by

p p)"at'C andl V± = V .D (2.23)

JIm p~articu1lar, we have v~ Oy where ?' dlenotes thle veritical velo)city. The verticl 1 dis-

pla~cenieimt of the p)anel, i;( t. z ), is governedl by the -systeii .f partial (liffereit ial equations"

(2.13). To prodluce the speý-ial forcing term.i (1 p'~±p .at iiig onI the paimel specified b'%

(2.18) inl Sec. 2.1. the iilCI(leuit potential shouldl~ be

~~~~~~ (t. yz 2 5cs - )]H(t + /(2.24)

Note that tihe inil .-.-ave 6(ý is at solution of (2.22) in1 the whiole space. When thie panlel

IS rigid, the( incidlelt. wave is reflectedl by the rigid ( .r, z) 1)lamie ani(l the reflectedl wa-v IS,

zr ) -(.1,-y, z) for yj > 0 .(2.25)

8



O() the side y <- 0. the flow-field remains at rest because there is no transmitted wav'.

For ai flexiblle panel, the panel oscillation excited by the 1pressure difference acro.ss the

paiiel -2t )(t, .r 0+. + ) indlices a scattered wave o(,) on the incident side andi a transinittwl

wave 0 t). Thus we write

S= D ' +o• + 0y) > 0 (2.260)

and

4 , y < 0. (2.26b)

Note that. 0(5,) anid o") are governed by the simple wave equation (2.22) in y > 0 and y < 0

respectively. The kinematic conditions on the (x, z ) plane. (2.20) and (2.23). become

0 .)(t,.rO+,z) = Oti(t.r, z) and (9 ott)(t,.r,O- •z) = OtI(t,.r.z) , (2.27?,

where q (lenotes the extension of the transverse displacenent of the panel. P. to the (.r,

z) plane, i. e..

1 = 0 , .r. z) . (2.28)

If the incident wave front hits the panel at t = 0. we can impose the homogeneous initial

('olditions ol o (-), ,(() and ii.

=0, at( , = 00 O,10) ==0 aid 7=O. (II=O for t_<0.

(2.29)

Since the anmbient fluid albove and below the panel are the s-tinc. (2.27) implies that the

velocity potential induced by the paiel oscillation has to lbe aliti-s villet ric ill Y. i. V.,

(p'(t. x. yz) = -. (")(t,r, - ,z) , !1 < 0 . (2.30)

Then the pressure difference across can be written as

xp = 2p,[Oz,)(1)(,.r,O+, -) + Ooo+"•(t. ... O+.z)] . P.,.. E, ' .2.31)

9



Tl I Ieriva tii 011of tI I s-In Iof c (I itiIo~ ms 2.21 ) to) 2.31 ). coaii p test, t he forimuaIoI III o(11(f

stI~lt!1r1'atl tcrajitehtii m)11)111:l" IliI'2lnear- thieorv fo the acwiltleheoc Thec

2. 17,).

The v('lOcity imoteiitial (ind ucied by the pallt I o)Scillation I/ js" Lv 1)v( Hxtit, watvc

d)i it 1(111 Is ti~ vell by) t he K*L~irchho(ff fi ri~u~l1;1.

> 0.) -2/J t. (L2.32

;ta nIrce a t x', ,' 0. z')allah { ul-()te-s the retaulded value of. I'. c.

R 0

C.C

Th (fitii.o (pldft' f '~ .a' .2 h )2 eua +is (,2-ii te(' 2) 'l'..

fH R K Ct Or r2 (x -. )+(: )2 - _'t .!/ . (2.34)

The (lImlimil Of i utegra t iou iii (2.32) is thle ilitersecti()i of 'H and the paiiel, 1. (1..

\(N"- ve lilt 1odu1 ce f he~ 1 )ohII cOot~hiiites. 1'. a . cenlteredI at (x, Ii). c.,e.

X/ U -. eo, and COS -i~ I. sill 0 2.36

and1( (2.32) lce~mc.iles

2-. C, I?

Nv it 11

t. r. 19) ~~1, x (). ýl23



Here R = (7.2 + y2 )1' P represents the slant height of a circular cone with vertex P(x, y, z),

a vertical axis and a base circle of radius r in the (x, z) plane. On account of (2.28), we

can extend the. domain of integration to 7" and rewrite (2.37) as an iterated integral,

1 2Ct f2 R r dr

0(s)(t,x,y >0,'z)= 27r]o [ dO gl(t- Z, 7,0) ] R (2.39)

The integral in 9 represents the contribution of the sources on a base circle of radius r.

In (2.31), we need to relate the unknown, 0(")(x, 0+, z) on the panel to 71(t, x, y) for

(x, z) E V. This is obtained by differentiating the above equation with respect to t and

using (2.28). This results in replacing 0(-) on the left-hand-side of (2.39) and gt in the

integrand by 0(") and gt, respectively.

As y - 0+, R ---. 7 and the circular disc R" is bounded by the sonic circle r = Ct.

Equation (2.39) yields

)(t' x'0+'z) g= jj g(t - r,,',O) d, dO. (2.40)

Note that in this form we remove the kernel 1/R in (2.32), which becomes singular as y --+ 0

and r --- 0 and shows that the area of the domain of integration is bounded above by 2irCt.

By using (2.31) and (2.40), (2.13) becomes a system of integro-differrential equations for

the panel oscillation, 71. The initial and boundary conditions for y are (2.16) and (2.17).

Thus we complete the formulation of the decoupled model. Time numerical solution of this

system will be described in Sec. 3.

2.3 Application to Noise Transmission in a Supersonic Flight at High Altitude

The analysis reported in Sec. 2.2 is based on two assumptions

(i) The flow-fields above and below the panlel have. the same an.l ient condition, i. e.,
S= P~o, = P_ and V = 0.

(ii) The panel is planar and not prestressed, i. e., uider zero tension.

11



The analysis can be employed to estimate the noise transmitted into the fuselage flying

at low speed and a relatively low lcx-r-il, where the static pressure remains nearly equal to

one atmosl)here. Assumption (i) is valid when ternis of the order of the flight Mach nmuber

A1 are omitted. Assumption (ii) is valid since the size of the )aniel L is much smaller than

the radius of the fuselage, Rf. There is no hoop stress when p+ = p- under assunmption

(i). In practice, thele is a pressure difference (p- - p+ ). even for a low Mach nunmber

flight.

For an airplane cruising at subsonic or supersonic speed, it is necessary to account for

the differences in densities and in pressures inside and outside the fuselage and the moving

media outside and to include the contribution of the hoop stress to the panel oscillation.

The formulation of the decoupled models for structural acoustic interactions in a moving

media at subsonic and sul)ersonic speeds is carried out using the linear theory for the flow-

field. The system of integro-differential equations for the panel oscillation is then reduced

to a system of differential equations when the acoustic wave length is much smaller than

the surface wave length [11].

In this subsection, we show that with minor modifications the above analysis b)econmes

app)licab)le to a supersonic airl)lane cruising at high altitude. We make use of the fact that

the cabin p)ressure, p-, and temperature and hence the density are maintained near the
ambient level while the outside pressure p+ and diensity p+ at the flight altitude H are

much lower. The density ratio, p+/p- is about 1/10 or 1/20 when H = 60,000 or S0, 000

ft. The -,.me is fr,,, for the pressure ratio while the absolute temperature ratio and hence

the ratio of the speed of sound remains 0(1), i. e.,

I= P+K/PL< 1 , p+pC= O(= ) and C+/C- = 0(1) . (2.41)

Thus, the density ratio it serves as a small p)arameter in the following niodification of the

analysis in Sec. 2.2.

O1n th(e transmitted side, y < 0, the governing equations. (2.13) (2.23), (2.261)), (2.27)

and (2.29). remain valid when the superscript "-'" is added to p, and C. On the incident

side, y > 0, equations (2.25), (2.26a). and (2.29) remain the same while (2.22). (2.23)

12



and (2.27) have to be modified to include the convection terms. Consequently, (2.30) and

(2.31) will be modified. In particular, we note the acoustic pressure relationship (2.23) in

the transmitted side,

M - = = _pOtO(t) , y < 0 (2.42)

and that on the incident side,

p + p(i) + p(r) + p(.) -_ip7p[Ot + mC+a1 i , y > 0 . (2.43)

Using (2.26a) and (2.43), we have

) = -tp-[ 1 + MC+O](S) y > 0 , (2.44)

Likewise, the kinematic condition on the y = 0+ is modified and (2.27) becomes,

OyO(")(, x,0+, z) = [0, +MC+Oa]Yl(t, x, z) and O•¢(')(t,x,O-,z) =Oti(t,x, z) . (2.45)

With the convection term at most of the order of the unsteady term, or one order smaller

under the short acoustic wave approximation, we deduce from (2.45)

ay00) (t, x, 0-, z) = O(Oay(0)(t, x, r,, z)) (2.46)

and then from (2.44)

)(x,R+, z) = O(it p(O(t, , 0. z)) • (2.47)

By using (2.41) and (2.44), the load on the panel, which is the pressure differeiice, becomes

Ap = (p• - p+) + [-2p(') + (p() - p("))]H(t)
(2.48)

= p.[1 - O(p)] + [-2p(') + p(l)(1 + O(1i)]H(t)

The constant load (p- - p+) ; p- is l)resent for all t. The unsteady load due to the

acoustic waves is present only for t > 0 and is much smaller then p-. The constant load

13



1)i-mluce it ' Static' lefleCtion l I( x. _- ) which does no(t generate far-Iieh I so uil(. The miist eadv

lo)a(I excites paniel o)scillatioxi ?,'( t, x, z ) and generates the far-field sounid. Therefore. we

sep~arate the static p~anel deflection front the unisteadlv oscillationl.

1/ ?g a.S)+ i(t .5).(2.49)

_Note that the panelo oscwillation, p,', is coupledI with onily- the acoustic field ( 2.4S8) ill the

transmIlit ted side. sinice J)() is p)rescribledl and p(s) is 0(/ ') related to p")~. This is equilvalent

to say tliat Iin a high altitude flight the a('li tic laipiing Ill the flow-hiel(l outsidc o)f Ole

fuselage is o)f the order o)f the dlensity ratio /I = pt /p2, relative to that lilsidle and( hence

is nieglegible.

Since the fluid is, at rest iinsidle the fuselage, the transmiitted wave obeys' the simiple

wave equationi (2.22). I'Ve c-anl make use of the analysis inl Sec. 2.2, inl particullar. (2.30)

andl (2.40). to relate the onl surface transmiitted pressure to the paniel o)scillationl.

P(, . 0t -, V,__ ' gut(t - 0' ) dr d9 . (2.50)

2w ]0 ]0 C-

Thus we have a clo)sed systein for the paniel ascillation, 71', froml which we call then conixipute

the transmnitted and scattered acoustic fields.

3. Numerical Methods

For the fully coutpled mnodelI, tihe imoimlinear Euler equations. (2. 7), are( solvedl usingo anl

exp~licit finite difference schemne. Time schieme, which is at genveralizatio)n of %NlacCo)rniac(ks,

schemne ob~tainied by Gottlieb and Turkel [12], is fourth-o)rder accurate inl space andl sec( n-()l

Ordler accurate Iin tinie. Further dletails onI the iimmlleinlent ationi of the schemile call I e found

inl Frendi cit al. [1,2]. Thie physical b~ounldary o)f the cnniiult attional d(l(nnaili ( thle 1 )( dt~l

boniudary, see Fig. 1) is comlposed of a flexible panel clamiped betweein rigid plates. O ver

the rigidl plates, tihe vertical veloc)(ity is zero) (i = 0) and the surface teinjperatumre is T,

which in this paper is the saine ats time fluid tenilperat tire, T, Time xr and z7 conniponeits

o)f time Velocity (11 andiit'w, resp)ectively ) are o)btained throuigh linearl ext rap dat io flu fm i the
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interior of the computational donmain. The pressure bounidary c'ond~itioni is obtaiiied uiing01

the normal mnomentunm equation by simply imposing the nlormlal gradient of the siunl of

pressure amnd vertical imnonientmunl flux to be Zero. 1. e., am (p) + 1w2 ) 0. Over thme flt xihbe

1)aiiel, the vertical velocity is set to be equal to that of tihe paimel and~ thme templleratulre 1"'

T,,,. The x' and z velocity components anld the prIessuire are extrapolatedl froml time interior

of the computational donmain. The appIropriate boundary (-ond (itlons' o)it the comipuitatioinal

domain are dlerived using the mlethodl of characteristics [13]. Oneit should1( mention that

time characteristic boundiary conditionis andI the extrapolation)1 are only first order accumra te.

while the interior schiemle is fourth order. These boundaries are lbelievedl to be a source for

nunmerical er-ror inl the fully coupled model. Time diensic;ons of the coimputationial doimnaili

are, 61 c-im, 3.05 inl and 40.64 mil lin the x', y aimld : direc tlons", respectively. Tihe nmblimler of

conmputational lpoints usedl are. 121, 241, and~ 81 jim the respective (hirectiOns.S

The nonlinear plate equationis, (2.13). are solved using a. finite elemenet minetliod devel-

op~ed by Robinson [14]. The Jpamiel is 30.5 cmi long, 20.32 cmil wide and 0.102 cmil thilck. zil~l

the liumber of elements usedl are 6 and 8 respectively.

Since the grid used1 fo solving the plate equations is rectangular. it is easlier to

evaluate the integral lin (2.40) lin cartesilan coordinates. Ini this case there is a singularity

at each conmputatiomnal point corresp)onding to r =0. Inl order to overcome this dhifficulty,

a Taylor series expamnsion up to the seconlh order is used to calculate thme contribution of

the singular point. The contributtioni of thme various points onl the lPanel that lie withinl

the sonic cicl (R < C scluae yfrtitegrating lin r using a combination of

Simpson and trapezoidal rules. The result is then integrated lin z using Simpson's rule

of integration. Because of the pre'tsenc(e of the retardedl time lin the integral, the vertical

velocity of the p~late (ill) is storedl at each poinit for several timme-stejps. Time evaluationl

of the double integral cani use a, much larger timie step) than the At for the integration of

the dlifferenitial equlationms, yet having the saniii degree of accumracy. For a plate' )f givenl

dimnemsionis ( L, W1), and for- at fixed tunle-step At, time mlaximumiii nulmbler of tiline-stelps to

b~e storedl is N = LT2 -+ 214 (CAt). Time number N has to be changed when calculating

the radiated pressure away froii the plate. The numubler N is relatedl to tihe radius of tihe
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largest sonic circle in the domain that contains the flexible panel. For the cases presented

in the next section N = 1503 for a time-step At = 4x10-6 sec.

4. Results and Discussion

The numerical schemes for the two models presented in See. 3 are used to predict the

vibration of a flexible panel and the resulting acoustic radiation. The panel is forced to

vibrate by harmonic plane acoustic waves at normal incidence. The frequency of the source

is 751 Hz, which corresponds to a natural frequency of the panel. Two different amplitudes

of the incident waves are used. The properties of the panel, which are considered to be

uniform, are: density pp = 4450.15 Kg/ni 3 , modulus of elasticity E = 1.10316x10 I N/ni2 ,

Poisson ratio v 0.33 and a damping ratio of 0.01. The acoustic fluid properties are:

temperature To = 288.33 'K, density po, = 1.23 Kg/ni 3, pressure po, = 1.013x10 5 N/n12

and sound speed coo = 340 in/sec. The specific heat at constant volune is c, = 1.004

KJ/(Kg 'K), the ratio of specific heats is -y = cp/c, = 1.4. In the-far field, the fluid is at

rest. The variables plotted on figures 2-5 are nondiniensional. The reference quantities are

given by

lref C 2
(xY,Z,71)re f = Ire tref - C' and T CI = -

C,

Pref = Poo, (u,v,w, -)rf = C, and (p,e)ref = p 0C'. (4.1)

where the reference length is lre = 0.3048 Ii.

Figure 1 shows the configuration of the computational domain, a rectangular box

with the lower side composed of a flexible panel clamped between rigid plates. For a low

excitation amplitude, 100 dB or 5 x 10-4 atm., Fig. 2 shows that the panel response is

linear. In this case, both models predict the same panel response as shown by the figure.

This result is expected since the incident wave is extremely weak. Figure 3a-b show the

time histories of the radiated near- and far-field pressures, 2.54 cii and 1.524 in, or L/12

and 5L, away from the panel center respectively. The radiated pressure predicted by the

linear theory (2.32) is in excellent agreement with that p)redicted by the Euler equations

(2.7).
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When the level of the excitation is increased to 160 dB, or 0.01 atm., the response

of the panel becomes nonlinear as shown by Fig. 4. The time history of the panel center

displacement shows a non-periodic 1)ehaviour characteristic of nonlinear response. The

figure also shows that even when the panel oscillation is nonlinear, the predictions of the

two models are in reasonably good agreement, because the pressure variation is still much

smaller than p., = 1 atm. The radiated near- and far-field pressure time histories are

shown on Fig. 5a-b. In the near-field, L/12, the predictions of the two models are in

reasonably good agreement and the maximum pressure variation is of the order of 0.02

atm. In the far-field, 5L, as shown in Fig. 5b, the maximum pressure variation is of the

order of 10' atm. and is reduced by a factor of 100 from that in the near-field. In Fig.

5b, the difference between the "decoupled model" and the "fully coupled model" can be

obseved. But this difference is of the order of 10' 3 times the pressure variation in the

inear-field and is within the accuracy of the numerical solution.

From a computational view point, it is important to compare the performance of the

two models, based oin the CPU time required by each calculation. In the linear vibration

regime, the "fully coupled model" used 36000 seconds of CPU time on a Cray-ymp to

advance the calculation by 10000 time-steps, whereas the "decoupled model" used only

1000 seconds for the same calculation. In the nonlinear vibration regime, grid refinements

were needed to resolve the large gradients both on the panel and in the radiation field.

Therefore, in order to advance the calculation by 10000 time-steps, 72000 seconds were

used by the "fully coupled model" while the "decoupled model" used only 1200 seconds.

5. Conclusions

An efficient model for coupling the vibration of a panel to the on surface acoustic radi-

ation was derived. The model uncouples the panel vibrations from the acoustic wave prop-

agation probleim. The results showed that this model, referred to as "decoupled model",

accurately predicts the panel response and acoustic radiation in the linear and nonlinear

vibration regimes so long as the pressure variation in the flow-field remains much smaller

than the ambient pressure. For the cases studied in this paper, the computational cost of
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the numleric'al integration of this mlodel is 36 timies cheaper in tihe hlear reginme and~ 60

timies cheaper in the nonlinear regine thani the cost of the "fully coupled iniodetF
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